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Abstract

Deep brain stimulation is a commonly employed treatment of advanced Parkinson’s disease. It
is based on stimulating deep brain structures, also known as basal ganglia, with high-frequency
electric pulses through a stimulation electrode, which is permanently implanted in the brain.
Prior to the stimulation electrode implantation, invasive microelectrode mapping of the
potential stimulation area is taken. These measurements record the electrophysiology of
the nearby neurons to ensure correct stimulation targeting. The signals measured during
such exploration are called microelectrode recordings and are the subject of analysis in this
thesis. Subthalamic nucleus is a typical target of deep brain stimulation in Parkinson’s disease
treatment. This thesis approaches to classify this structure from the microelectrode recordings.
Besides, the neural oscillatory activity of the basal ganglia in the beta frequency band (13
- 30 Hz) is extracted from the microelectrode recordings. The beta activity is then studied
in relation to its localization in the basal ganglia and the clinical symptoms of Parkinson’s
disease.

Keywords: Parkinson’s disease, Deep Brain Stimulation, subthalamic nucleus,
microelectrode recordings, micro-EEG, µEEG, beta activity, electrophysiology, neural activity

Supervisor: Ing. Eduard Bakštein, Ph.D.
Analysis and Interpretation of Biomedical Data, FEE

vi



Abstrakt

Hluboká mozková stimulace je často aplikovanou léčbou v pokročilých stadiích Parkinsonovy
choroby. Její princip je založen na stimulaci hlubokých mozkových struktur, také známých
jako bazální ganglia, vysokofrekvenčními pulzy přes permanentně implantovanou stimulační
elektrodu. Před její samotnou implantací se provádí invazivní mapování potenciální stimulační
oblasti pomocí mikroelektrod. Tato měření zaznamenávají elektrofyziologii okolních neuronů
a zajišťují správné zacílení stimulace. Signály naměřené během takové explorace se nazývají
mikroelektrodové záznamy a jsou předmětem analýzy v této práci. Subthalamické jádro je
typickým cílem hluboké mozkové stimulace v léčbě Parkinsonovy choroby. Tato práce se
zabývá klasifikací subthalamického jádra s mikroelektrodových záznamů. Kromě toho jsou z
dat extrahovány neurální oscilace bazálních ganglií v beta frekvenčním pásmu (13 - 30 Hz).
Tato beta aktivita je poté studována ve spojitosti s lokalizací mikroelektrodových záznamů v
rámci bazálních ganglií a klinickými symptomy Parkinsovovy choroby.

Klíčová slova: Parkinsonova choroba, hluboká mozková stimulace, subthalamické jádro,
mikroelektrodové záznamy, mikro-EEG, µEEG, beta aktivita, electrofyziologie, neurální
aktivita

Překlad názvu: Analýza a klasifikace subthalamického jádra z mikroelektrodových záznamů
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Chapter 1

Introduction

Contemporary methods in medicine have brought tremendous progress in terms of understand-
ing the human body, its organ systems, their functions, and the interconnections between
them. Using a broad range of measurement tools, it is possible to identify various types
of deviations to recognize pathologies, their origin, expression, and progress. Each mea-
surement brings specific data and a unique view on the system state and actions. Despite
such advances, the brain and neural structures remain mostly undiscovered. The human
brain is a complex organ built of the order of 1010 neurons, which are interconnected with
each other through synapses. Each neuron communicates with thousands of other neurons
[Silbernagl and Despopoulos, 2008]. It is therefore beyond the possibilities of current science
to fully understand the complete brain structure and related processes.

In the past decades, various conditions related to aberrations of brain structure were studied.
Parkinson’s disease (PD), which affects 1% of the world population above 60 years, is one of
the most prevalent among them. The cardinal symptoms of Parkinson’s disease are related to
motor skills, namely, tremor, rigidity, and bradykinesia. Occurrence of these symptoms was
found to be related to the degradation of dopaminergic neurons in the brain. The lack of
dopamine then disturbs the exhibition-inhibition balance in the motor regulation pathways in
the basal ganglia causing motor impairment [Armstrong and Okun, 2020]. Despite the fact
that the cause of the neural death is yet not completely understood and there is no cure to
revert or stop their deterioration, dramatic advances were made to relieve the symptoms,
which considerably ameliorate patients’ quality of life. A common treatment method for
advanced PD motor symptoms is deep brain stimulation (DBS), first introduced in 1987
[Gardner, 2013]. Since then, the treatment has been largely optimized for efficiency while
mitigating the stimulation side effects. DBS is based on stimulating a target structure in
the basal ganglia, typically the subthalamic nucleus (STN), with high-frequency electric
pulses. Due to the size and location of the STN, the stimulation electrode placement is
a very complicated and delicate task. The current approach in most centres combines 3D
medical imaging methods with invasive microelectrode measurements for precise electrode
implantation. The microelectrodes are inserted along the planned implantation trajectory and
map the surrounding neural activity. The measurements are called microelectrode recordings
(MER), microrecordings, or micro-EEG (µEEG). Such signals present not only a tool for deep
brain structure localization, but also a unique insight into their in vivo electrophysiology.
This information is invaluable as deep brain structures are otherwise hardly accessible with
less invasive methods.
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1. Introduction ...........................................
This thesis aims to process the clinical MER data and interpret their features in relation to

their clinical relevance and stimulation electrode targeting. The main goals are specified as
follows. Firstly, to contribute to the microelectrode recording (MER) dataset by acquiring,
converting, and preprocessing new clinical data. Secondly, to implement a classifier for the
subthalamic nucleus identification from clinical MER data and verify its performance on
the prepared dataset. Although the neurosurgeons are trained to identify the STN through
audiovisual signal inspection, automatic STN classification provides an objective support to the
surgeon’s decisions. We base our classifier on the signal normalized root mean square (NRMS)
feature introduced by [Moran et al., 2006], which has been positively evaluated in literature
[Konicarová, 2021]. In addition to that, we analyze the clinical MER spectral features inside
and outside the STN with focus on activity in the beta band (13 - 30 Hz). The beta activity
contribution to STN classification is then evaluated. Thirdly, we implement a visualization tool
for the MER signals in our dataset and its attributes to facilitate data inspection and provide
an idea of the feature distribution in 3D space. And finally, we identify the sensorimotor region
of the STN and the neural beta oscillations. These two attributes are supposed to be closely
related according to literature, where sensorimotor region of STN coincides with elevated
beta activity observed in local field potential (LFP) measurements. Several approaches
of beta activity recognition are taken and compared, as the beta activity feature is not
generally specified and each resource authors propose a different method [Zaidel et al., 2010],
[Contarino et al., 2012], [Horn et al., 2017], [van Wijk et al., 2017], [Tinkhauser et al., 2017],
[Koirala et al., 2020]. Our clinical MER data have different characteristics and limitations
than LFP data, which puts additional challenges on beta activity identification. To verify
our methods, the results on the clinical data are compared to the beta activity observed in
nonfiltered broadband MER signals, which correspond to the main source of data for beta
activity analysis in the relevant literature. An additional clinical interpretation of the beta
activity is the relation to the PD symptoms severity, which is also evaluated in this thesis.

The structure is organized as follows. The necessary medical background to the problem is
explained in Chapter 2 along with the origin of the analyzed data. We describe the methods
used throughout the work in Chapter 3. The results of the applied methods in several tasks
given in the assignment are reported in Chapter 4. Our findings are then discussed in Chapter
5 in context of existing research. Finally, Chapter 6 concludes the whole thesis, summarizing
its contributions and potential future work.

2



Chapter 2

Background

This chapter aims to provide a basic insight into the source of the signals further analysed
in this thesis. It introduces the necessary medical background, including a brief description
of symptoms, origin and current understanding of Parkinson’s disease (PD) in Section 2.1.
Contemporary methods of treatment are characterized in Section 2.2 and further with an
emphasis on deep brain stimulation (DBS) in Section 2.3. Afterwards, Section 2.4 elaborates
on the subthalamic nucleus (STN), a common target area of DBS, its anatomy, and other
characteristics. The electrophysiological activity of a single neuron is briefly covered in Section
2.5. Section 2.6 reviews spectral features of the analysed electrophysiological signals with
special attention to beta band (13-30 Hz) activity. Finally, Section 2.7 introduces Unified
Parkinson’s disease rating scale, a widely used tool of PD severity assessment, and its subsets
handled in this thesis.

2.1 Parkinson’s disease

Parkinson’s disease is the second most common (after Alzheimer’s disease) neurodegenerative
disorder. It originates in the neural system and has an irreversible progressive character. The
nerve cells in the deep brain structures gradually degrade, which cause the symptoms to
worsen over time. Unfortunately, contemporary medicine has no cure for PD, which could
revert or stop the deterioration of nerve cells. However, there are methods to relieve the
main PD symptoms. If applied appropriately, they dramatically increase the quality of the
patient’s life and may slow down the disease progression.

The main symptoms of Parkinson’s disease affect motor skills. There are five primary motor
symptoms, which disturb the patient’s movement in general: akinesia, bradykinesia, rigidity,
tremor, and postural instability [Moustafa et al., 2016]. Akinesia is defined as a difficulty
initiating movements and a poverty of action. Bradykinesia is characterized by a slowness
of movement. It is closely related to and often examined together with akinesia. Rigidity is
described as a stiffness experienced by the patient during voluntary movements. It can be also
expressed as a stiffness during passive limb stretching done by the examiner. As for tremor,
there are several types. Rest tremor is the most common in PD, while action and postural
tremor occur mostly in other disorders, such as essential tremor disorder [Bhidayasiri, 2005].
The secondary motor symptoms are built upon primary symptoms and movement coordination
difficulties. They are associated with impairment of complex motor behaviors, such as walking
gait, speech, handwriting, and facial expression [Moustafa et al., 2016].

3



2. Background ...........................................
Besides motor symptoms, nonmotor symptoms may also appear and affect many organ

systems. They include loss of smell, sleep dysfunction, such as daytime sleepiness or rapid
eye movement sleep behavior disorder, or gastrointestinal and genitourinary difficulties,
possibly leading to autonomic dysfunction. These symptoms, although not PD specific,
occur in early stages and may allow to diagnose or predict PD before the characteristic
motor symptoms develop [Chaudhuri et al., 2010]. Hallucinations and cognitive impairment
affecting attention, executive, and visuospatial functions are associated with advanced PD
[Armstrong and Okun, 2020].

As already mentioned, Parkinson’s disease is a disorder caused by irreversible deterio-
ration of nerve cells. According to the hypothesis published by [Braak et al., 2003], the
pathophysiology of PD starts in the brainstem with lesions in the medulla oblongata and
pontine tegmentum. In this initial stage, nonmotor symptoms appear, often not taken into
consideration as potential PD symptoms [Chaudhuri et al., 2010]. As the disease progresses,
the degeneration of nerve cells extends to areas of the midbrain, specifically the substantia
nigra pars reticulata (SNr), which contains the nerve cells responsible for the production
of dopamine hormone. Death of dopaminergic neurons and the resulting lack of dopamine
leads to insufficient regulation of neural pathways in the deep brain structures (basal ganglia),
followed by motor impairment, which is characteristic for PD. Therefore, PD is typically
diagnosed at this stage [Armstrong and Okun, 2020]. Later on, the pathology spreads to the
mesocortex and allocortex. In advanced PD, the neocortex is involved, specifically the sensory
association and premotor areas, causing cognitive impairment, dementia, and hallucinations
[Braak et al., 2003].

2.2 Treatment

The treatment of PD is symptomatic, as there is currently no cure to resolve the underlying
pathophysiology and stop the disease progression. Early stage treatment is usually phar-
macologic. Since the motor symptoms are caused by degradation of dopaminergic neurons
and thus decreased dopamine level, the therapy aims to compensate it. The most common
medications are levodopa preparations. Levodopa is a dopamine precursor, which metabolizes
into dopamine in the basal ganglia, but also in other organ systems. Along with levodopa,
other medications may be added to the therapy to enhance the dopamine release. Majority
of patients respond well to medication with levodopa [Fox et al., 2018]. However, with the
progression of the disease, patients require higher and more frequent doses due to progressive
pathophysiological changes [Chou et al., 2018]. Such increased levodopa dosage is related to
a higher risk of medication side effects caused by the dopamine level fluctuations, such as
various gastrointestinal problems, dyskinesia, sudden recurrence of the motor symptoms, and
functional disabilities between doses. There are also variants of PD appearing in 9-16% of
patients, which are resistant to medication. For some of these cases, there are options for
invasive therapy affecting directly the basal ganglia structures through neurosurgical methods.
There are two neurosurgical approaches: lesional method based on burning out brain tissue
in a particular target area, and deep brain stimulation (DBS), the latter being much more
commonly used in recent years [Dallapiazza et al., 2018].
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2.3 Deep Brain Stimulation

Deep Brain Stimulation (DBS) is a therapeutic method commonly used to alleviate otherwise
treatment-resistant symptoms [Herrington et al., 2016]. In Parkinson’s disease, it is used to
alleviate the motor symptoms in patients with severe impairment and a sufficient response to
previous levodopa medication. The stimulation target can be either the globus pallidus interna
(GPi) or the subthalamic nucleus (STN). The choice of the target area depends on several
indications, such as dominating symptoms or psychiatric anamnesis [Dallapiazza et al., 2018].
The stimulation can be either unilateral; i. e., solely in the right or left hemisphere, or more
often bilateral; i. e. stimulating both nuclei. Besides PD, DBS is also used in therapy of
chronic pain disorders, essential tremor, dystonia, obsessive-compulsive disorder, or chronic
depression [Kringelbach et al., 2007]. Besides the deep brain structures, other areas of the
brain might be also stimulated in neuropsychiatric therapy; for example, cortical stimulation
in the treatment of epilepsy or schizophrenia.

DBS in PD is based on continuous stimulation of a target area in the basal ganglia with
high-frequency (>130 Hz) electric pulses, which have been found empirically to be the most
effective although the actual regulation mechanism remains unknown [Herrington et al., 2016].
The stimulation is provided by a neurostimulator, which is typically implanted in the chest
cavity and generates the pulses applied to the target area through subcutaneous wiring and
stimulation electrode implanted in deep brain structures. The stimulator also usually contains
the reference electrode [Walckiers et al., 2010]. See Figure 2.1 for illustration of a typical DBS
setup. During the implantation surgery, the patient’s head is fixed in a stereotactic frame. A
hole of approximately 14 mm in diameter is drilled in the skull and the electrode is inserted
through a straight-line trajectory, which is carefully planned and calculated in advance using
3D imaging methods, usually magnetic resonance imaging (MRI) or computer tomography
scans (CT) [Kringelbach et al., 2007]. The stimulation electrodes are of a long cylinder shape
with 1.27 mm in diameter. The implantation of the electrode is done preferably with the
patient awake, in order to observe the neural activity undistorted by anesthesia, and the
immediate effects of brain tissue penetration.

Nevertheless, due to the small dimensions of basal ganglia; for instance, the maximum
dimension of STN is approximately 8.5 mm, and the pliability of the brain issue, the actual
position of the target area during surgery may differ significantly from the plan. Typical
imaging methods are not sufficiently precise due to low resolution and potential target location
alterations. Therefore, the electrophysiological activity is used in most centers as an additional
indicator to distinguish particular deep brain structures [Israel and Burchiel, 2004]. Prior
to the DBS electrode implantation, an invasive measurement (exploration) is performed,
when the electrophysiological activity of surrounding neurons is measured and recorded.
Recordings are made via electrodes with smaller dimensions than stimulation electrodes
in order to cause as little damage to brain tissue as possible. Because of the electrode
dimensions being as small as 5 µm in diameter, the recording electrodes are also called
microelectrodes and recorded signals are referred to as micro-EEG (µEEG), microelectrode
recordings (MER) or microrecordings. Such small electrode tip size allows to record the
extracellular single-neuron activity and observe the individual action potentials (AP) (see
Section 2.5 for explanation of AP). To make use of this feature, the recordings are sampled
with frequency as high as 24 kHz. Thus, both spatial and temporal resolutions of MERs
are significantly higher than is typical in other biomedical signals (electrocardiography,
electroencephalography, etc.). The amplitude of the measured voltage (∼ 1 mV) is also higher
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than in conventional transcranial electroencephalography (EEG) (∼ 10µV) as a result of the
invasive character of the measurement; i. e., measuring neural activity directly in the brain
tissue [Israel and Burchiel, 2004]. For examples of typical measured signals, see Figure 2.2.

Figure 2.1: Deep brain stimulation setup illustration. Reproduced with permission from
[Okun, 2012], Copyright Massachusetts Medical Society.

Throughout the operation, the acquired MER signals are filtered, amplified, and converted
to an audio output. The surgeon is trained to recognize different areas in the basal ganglia
during the exploration process according to the audio and visual signal inspection, see Figure
2.2 for illustration. The identified areas are then recorded in an operation protocol. According
to these exploration findings, the surgeon decides where the stimulation electrode should be
implanted for a successful treatment. Acquired recordings along with the operation protocol
are then subject to further research for a better understanding of basal ganglia physiology.
The technical process of MER acquisition and processing is described more thoroughly in
Chapter 3.
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Figure 2.2: MER visual characteristics in different basal ganglia structures [Michmizos et al., 2017].
Copyright © 2017, IEEE.

2.4 Subthalamic nucleus

In this thesis, we focus on deep brain stimulation of the subthalamic nucleus, which is
indicated as the target area for most Parkinson’s disease patients with tremor dominant
symptoms and no psychiatric disorder history [Dallapiazza et al., 2018]. Although rather
small in size, STN is an integral part of various brain pathways. Besides motor, it also has
an influence on associative functions and the limbic system; i. e., emotional and impulse
control [Silbernagl and Despopoulos, 2008]. It is believed, that the anatomy of the nucleus is
divided into regions according to these functions. The functional topography of primate STN
is shown in Figure 2.3.

Figure 2.3: Topography of primate STN. Coronal view. [Mathai and Smith, 2011]. © 2011 Mathai
and Smith.

Given the STN involvement in multiple regulation systems, the STN-DBS may also af-
fect emotional, behavioral, or cognitive functions, depending on the electrode localization
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within the STN. Sub-optimal stimulation placement increases the probability of postop-
erative development of addiction, depression, anxiety, or other neuropsychiatric disorder
[Serranová et al., 2019]. To minimize the risk of such side effects, while maximising the ther-
apeutic outcome, it is favorable to target not only STN itself, but also specific areas within
[Akram et al., 2017]. The motor part of the STN is located on the dorsolateral end. Stimula-
tion of this part was associated with better improvement of motor symptoms and lower risk of
neuropsychiatric complications [Zaidel et al., 2010]. Such placement should lead to an efficient
stimulation even with a smaller pulse amplitude. Identification of STN itself from microelec-
trode recordings has been achieved during the past decades using various signal features and
probabilistic models [Moran et al., 2006], [Bakstein et al., 2016], [Konicarová, 2021]. Subre-
gions of STN with different functions and stimulation effects have also been recognized by many
authors [Zaidel et al., 2010], [Akram et al., 2017], [Horn et al., 2017], [Serranová et al., 2019],
[Koirala et al., 2020], [Milosevic et al., 2020]. However, such task is complicated by the fact,
that there are no clear boundaries of such areas, hence the objective ground truth to support
the findings is missing.

2.5 Neural activity

The human nervous system is composed of more than 1010 nerve cells (neurons). The neuron
is the structural and functional unit of the neural system [Silbernagl and Despopoulos, 2008].
It consists of the body (soma), a single axon, and multiple dendrites. Nerve cells are highly
interconnected through dendrites, where the input stimuli are received, and axons, through
which the output signal is transmitted to other neurons. The information is transmitted
as an electrical signal produced by fluctuating concentrations of ions inside and outside the
cell. The neuron membrane potential is defined as the difference between the inside and
outside electric potentials. The resting potential of a neuron is the membrane potential during
an electrochemical balance. It is usually around -70 mV. Despite the fact that the electric
potential amplitude in principle changes its value continuously, the information produced by
a neuron is rather of a discrete character. The neuron reacts to stimuli either by remaining
silent or by creating an action potential (AP). This attribute is known as the All-or-None law
[Silbernagl and Despopoulos, 2008].

Figure 2.4: Action potential and fluctuating membrane conductance for different ions. Copyright
© [Häusser, 2000]
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An AP is a fast (∼ 1 ms) peak of voltage with an amplitude significantly higher than the
resting potential caused by sudden changes of cell membrane conductivity for certain ions,
mostly Na+ or K+ (see Figure 2.4). The spike is followed by a refractory period, when the
neuron remains silent. After the refractory period is over, the neuron may produce another
AP depending on the input stimuli. Therefore, the output information of a neuron is coded in
the spike timing and frequency rather than the immediate electric potential values. A series
of AP and time intervals between them is often referred to as spiking or firing.

2.6 Beta activity

Exaggerated beta oscillatory activity (13-30 Hz) in the basal ganglia is commonly found in
patients with Parkinson’s disease [Tinkhauser et al., 2017]. Although the mechanism is not yet
completely understood, the correlation between the spectral power on frequencies in the beta
band and PD symptoms severity has been reviewed by several authors [Oswal et al., 2013],
[Horn et al., 2017], [Tinkhauser et al., 2017], [Telkes et al., 2018]. It has been also found, that
the neural synchronization in the beta band decreased after an acute levodopa medication
dosage and was associated with higher voluntary movement velocity and higher voltage of
agonist muscle activity [Chung et al., 2018]. Furthermore, electric stimulation of basal ganglia
at frequencies in the beta band results in slowing of movement and worsening of Parkinsonian
symptoms in tested subjects [Oswal et al., 2013]. Therefore, it is believed that beta activity
is a potential physiomarker of pathological disruptions in neural pathways causing the motor
symptoms of Parkinson’s disease.

Investigating neural oscillations at beta band frequencies may help optimizing deep brain
stimulation outcomes. As observed in [Zaidel et al., 2010], the neurons in subthalamic nucleus
form a distinct dorsolateral oscillatory region. The location of this area overlaps with the
sensorimotor subregion of STN mentioned in Section 2.4, which is also situated in the dorsolat-
eral part of STN. Hence, beta band oscillations are thought to mark the optimal stimulation
target in the STN to enhance the medication response for alleviation of PD motor symptoms
[Zaidel et al., 2010], [Horn et al., 2017]. Apart from electrode targeting during surgery, beta
activity analysis can be used to regulate a closed-loop DBS to ameliorate the treatment effects.
Traditionally, the DBS is based on continuous high-frequency pulses, where parameters are
set according to patients’ subjective symptom perception [Kringelbach et al., 2007]. However,
experiments in primate models have shown closed-loop DBS superiority to the open-loop
system [Rosin et al., 2011].

Spectral features of basal ganglia activity have also been correlated with nonmotor symp-
toms of Parkinson’s disease. For example, theta activity has been implicated in cognitive
processing. Elevated theta activity (2-8 Hz) has been found in patients with the occur-
rence of impulse control disorders [Oswal et al., 2013]. Furthermore, alpha band (9-14 Hz)
reactivity to emotional stimuli has been an important mark of depression symptoms of PD
[Huebl et al., 2011]. However, such mechanisms are out of the scope of this thesis due to the
work span and inaccessibility of appropriate data. Further in this work, we focus solely on
analysing the beta activity in relation to the motor impairment in Parkinson’s disease.
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2.7 Unified Parkinson’s disease rating scale

As noted in Section 2.1, Parkinson’s disease is a disorder with many different symptoms.
Occurrence of the symptoms is individual and varies among patients. There has therefore been
a need to quantify PD severity to observe the disease progression, treatment effects, or patient’s
eligibility for DBS surgery. To evaluate the symptoms of Parkinson’s disease quantitatively,
the Unified Parkinson’s disease rating scale (UPDRS) was designed [Goetz et al., 2008]. It is
now a widely used tool to assess PD severity. The patient, their caregiver, or both of them
fill out a questionnaire. They rate a wide set of symptoms on a scale from 0 to 4 according to
impairment severity:..0. No impairment..1. Slight..2. Mild..3. Moderate..4. Severe.

Conditions affecting the PD symptoms must be also specified, i. e., before or after DBS
surgery, whether the patient is on medication, minutes since the last medication dose, whether
the stimulation is turned on or off. The questionnaire consists of four parts in total:..1. Non-Motor Aspects of Experiences of Daily Living (nM-EDL)..2. Motor Aspects of Experiences of Daily Living (M-EDL)..3. Motor Examination..4. Motor Complications.

In this thesis, we focus on Part III - Motor Examination, specifically the axial (one-sided)
symptoms associated with tremor, rigidity, and bradykinesia, which are most correlated with
beta activity according to literature [Oswal et al., 2013]. Each set of symptoms is evaluated
separately for the left and the right side of the body. Tremor score in this thesis is a sum of
three ratings:

. Upper Extremity Rest Tremor - the highest seen amplitude of trembling of the stretched
arm in front of the body with palms down,. Lower Extremity Rest Tremor - the highest seen amplitude of trembling of the leg at
rest,. Upper Extremity Action Tremor - the highest seen amplitude of hand trembling during
slow finger-to-nose maneuvres.
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Rigidity is tested in the neck and each limb. The patient remains passive while the examiner
moves the tested body part to check for rigidity. If no rigidity is detected, the test is repeated,
while the patient performs an action maneuver (tapping fingers, fist opening/closing, etc.) on
the side not being tested. Symptoms regarded in the rigidity score in this thesis are:

. Upper Extremity Rigidity - rigidity in the major upper limb joints (wrist, elbow, shoulder),. Lower Extremity Rigidity - rigidity in the major lower limb joints (ankle, knee, hip).

As for bradykinesia, there are several one-sided tests to check the movement slowness. The
examiner shows the patient a specific movement and asks them to repeat the movement
several times as largely and as fast as possible. The amplitude, speed, rhythm, and other
dynamics of the movements are then observed and rated on the 0-4 scale. Symptoms regarded
in the bradykinesia score in this thesis are:

. Finger Tapping - tapping the index finger on the thumb,. Hand Movements - opening and closing the hand,. Hand Pronation - the arm is extended in front of the body and the palm is turned up
and down alternately,. Toe Tapping - tapping the toes with heel on the ground.
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Chapter 3

Methods

This chapter describes the characteristics of the analysed data and explains the methods
fundamental for this thesis and the subject in general. First, the analysed microelectrode
recordings (MER), their acquisition, and characteristics are described in Section 3.1. Section
3.2 explains the signal preprocessing prior to feature extraction depicted in Section 3.3. The
visualization tools used and implemented within this thesis are described in Section 3.4.
Additional methods related to the subthalamic nucleus task are outlined in Section 3.5. At
last, the statistical evaluation methods are outlined in Section 3.6.

3.1 Microelectrode recordings

Signals used in this thesis were acquired through invasive measurements (explorations) of neural
activity in the basal ganglia prior to implantation of the DBS electrode as previously described
in Section 2.3. The measurements are made through five parallel tungsten microelectrodes
in a cross formation (also called a ’Ben-gun’ formation) with 2 mm spacing between the
neighbour electrodes. The electrodes in the formation are further referred to as central,
anterior, posterior, medial, and lateral according to their position with respect to the patient’s
principal axes as in Figure 3.1. The acquired signals are sampled at 24 kHz, amplified, and
band-pass filtered at 500 Hz - 5 kHz through the Medtronic Lead Point system. This system
also removes the 50 Hz powerline interference upon recording.

During the exploration, the electrodes are inserted in the brain from the anterio-dorso-lateral
direction along a straight-line planned implantation trajectory. As the insertion proceeds, the
electric activity of the surroundings is measured in each electrode and each increment of depth.
The depths are labeled with the distance (in mm) from the expected target area position,
which is labeled as T. Recordings acquired before the T depth was reached are labeled as
negative; e. g., T-1.5 depth is 1.5 mm above (before) the expected area. Recordings acquired
after the target depth was reached are labeled as positive; e. g., T+2.0 depth is 2.0 mm under
(after) the expected area. The current measurements are instantly converted to audio output.
The surgeon interprets the sound and marks the identified area in an operation protocol. The
recording starts in T-10 depth and continues according to the surgeon’s instructions so as to
locate the desired area while minimising brain tissue damage.
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Figure 3.1: Ben-gun electrode formation schematic. Axial view.

Every patient’s dataset contains a series of such recordings, each of 10s length, from every
electrode and explored depth increment. The MER series is matched with the corresponding
operation protocol scan (as in Figure 3.2), where the explored structures are labeled. After
the DBS surgery, the MER data are extracted from the recording device, converted to binary
format using LeadPoint proprietary software, anonymized, and finally imported into our
dbsProcessing Data Access Object (DAO) developed by [Sieger, 2013]. Imported data are
labeled according to the paired surgery protocols manually. This whole process must be done
individually for each patient (twice in case of a bilateral implantation).

3.1.1 Broadband microelectrode recording

Due to the MER band-pass filtering in the recording setup, the background activity of the
distant neural populations is mitigated in the clinical microelectrode recordings. Thus, the
observed spectral features in the lower frequencies (<100 Hz) are very limited and mostly
reflect the spiking activity of a few nearby neurons. In order to analyze the low frequency
spectral features, an experimental recording setup made by BrainScope was added to the
one already used for clinical purposes. The signals during the DBS surgery simultaneously
with the clinical MERs using the same set of microelectrodes. These signals are high-pass
filtered at 10 Hz and are otherwise not limited in frequency. Further in this thesis, such
signals are referred to as broadband microelectrode recordings. Since 2016, the broad band
MERs are recorded during experiments such as in [Serranová et al., 2019] in the Na Homolce
hospital, Prague, Czech republic. Since 2020, the basal activity (at rest) is also recorded in
the broadband signals along with the clinical ones.
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Figure 3.2: Example of an operation protocol.
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3.2 Artifact removal

Given the small electrode tip size (∼1 µm) and low measured voltage (<1 mV), the MER
signals are prone to gather various artifacts. Artifacts are a nonphysiological electric activity,
usually caused by mechanical shifts or electromagnetic interference from the surrounding
devices, which disrupts the information about the measured physiological activity. Despite
preprocessing the signals upon recording, many artifacts remain in the data. Data disrupted
with artifacts can be either removed manually, by visual inspection or using automatic
detection methods. For the purpose of this thesis, we use a simple and straightforward method
of maximum spectral difference as introduced in [Bakštein et al., 2017].

3.2.1 Maximum spectral difference

The main assumptions of this method are that the power spectral density (PSD) of an
artifact-free band-pass filtered MER signal is smooth and its shape is similar across patients
and electrodes, while the signals disrupted by artifacts commonly contain high peaks and other
disturbances in their spectrum. At first, a model spectrum MP is calculated as the mean
spectrum of the signal segments previously annotated as clean (artifact-free) by a team of
professionals. Using a set of N training signals T = {X1, X2, ..., XN} and artifact annotations
A = {y1, y2, ..., yN} with values yi = 1 for a clean signal and yi = 0 for a disrupted signal and
Pi as the normalized PSD corresponding to the training signal Xi, the MP calculation can
be described as

MP = 1∑N
i=1 ai

·
N∑

i=1
ai · Pi. (3.1)

The normalized power spectral density P of a signal X is calculated dividing the original
signal PSD by the total signal power. The sum of P is then always 1 and thus independent
on the specific electrode impedance, which can vary significantly. The maximum spectral
difference feature d for the assessed signal X is then calculated as the maximum absolute
difference of its normalized spectrum P and the model spectrum MP over all M spectral
bins as

d = maxm=1,...,M |P (m)−MP (m)|. (3.2)

The d value is then compared to a threshold to evaluate whether there is an artifact present.
The threshold is optimized as in [Bakštein et al., 2017] on a separate training dataset. All
spectra for MDP are calculated using Welch’s method [Welch, 1967] (see Section 3.3.3) with
Hamming window of 2048 samples (∼85.3s length, ∼11.72Hz resolution) and 50% window
overlap. MER signals are divided into segments of 1s length. The d value is evaluated for
each segment and the longest contiguous sequence of artifact-free segments is selected for
further analysis and the rest of the recording is discarded.

3.3 Feature extraction

As can be seen in Figure 2.2, the MER signal has two compounds: the action potentials
(spikes) of neurons close to the microelectrode and the background activity of remote neural
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populations. To enhance the beta activity encoded as the firing frequency of nearby neurons,
two different approaches are used. The first technique calculates the signal envelope from the
analytic signal using Hilbert transformation. The other procedure converts the original signal
into a binary signal with denoted times of neuron action potentials (spikes). Such signal
is also referred to as a spiketrain. Effects of feature extraction methods on the spectrum
calculation compared to using unprocessed signals are illustrated in Figure 3.3 on artificially
generated signals.
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Figure 3.3: Demonstration of calculated PSD characteristics on synthetic signals.
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3.3.1 Signal envelope

The main purpose of this method is to attain spiking activity in the signal with fast and
simple tools. The signal envelope is calculated as the instantaneous amplitude of the signal,
which is the absolute value of the corresponding analytic signal [Heil, 2007]. Analytic signal
of a real-valued function s(t) is defined as

sa(t) = s(t) + jŝ(t), (3.3)

where j is the imaginary unit and ŝ(t) is the Hilbert transform of s(t). The Hilbert transform
is defined as

H(u)(t) = 1
π

p. v.
∫ +∞

−∞

u(τ)
t− τ

, (3.4)

where p. v. denotes the Cauchy principal value. An example MER segment illustrating the
calculated signal envelope is in Figure 3.4.
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Figure 3.4: Example of MER signal envelope calculated from the analytic signal.

3.3.2 Spike sorting

As denoted in Section 2.5, information output of a neuron is encoded in the spiking times and
frequency rather than the immediate voltage amplitude. Spike sorting process addresses this
feature by detecting action potentials from the raw signal and assigning them to individual
neurons surrounding the microelectrode. There are different approaches to spike sorting. In this
thesis, we employ the WaveClus algorithm proposed in [Quian Quiroga and Nadasdy, 2004].
WaveClus has been reviewed on artificially generated noised data as the most accurate one in
the comparison of three spike sorting algorithms made by [Wild et al., 2012],

The algorithm comprises the following steps. The first step is the spike detection. It
consists of band-pass filtering to eliminate the background activity, followed by automatic
amplitude thresholding. The threshold is calculated for each signal as a multiplied estimate
of the standard deviation of the background noise σn.

Thr = 4σn; σn = median
{ |x|

0.6745

}
, (3.5)
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where x is the band-pass filtered signal. In the second step, a small set of wavelet coefficients
from each spike is chosen as an input for the clustering algorithm. Finally, the superparamag-
netic clustering (SPC) classifies the spikes according to the selected set of wavelet coefficients.
The main output of the spike sorting used in this thesis are spiketrains. A spiketrain is a
binary signal with denoted times of detected action potentials belonging to one neural cluster.

3.3.3 Power spectral density

Power spectral density (PSD) for the artifact filtering and estimating beta activity was
calculated using Welch’s method [Welch, 1967], also known as the periodogram method. It is
based on averaging periodograms calculated on partial signal segments. At first, the signal
is sectioned into segments of a specified window length. The segments may overlap by a
specified number of samples. Second, the segments are multiplied by a window function and
the squared value of their discrete Fourier transform (DFT), also known as the periodogram,
is calculated. And eventually the DFTs are averaged to form the overall power spectral
density. The choice of the window type and length is derived from the demands on the PSD
resolution and variance. A common choice is to set the number of samples in the window
(window length) equivalent to the number of spectral bins in the resulting periodograms, as
the maximum frequency resolution (spectral bin width) is equal to the window length inverse.
Longer windows lead to higher frequency resolution, hence higher variance. Averaging higher
number of periodograms enhances the robustness and thus reduces the PSD variance. In
this work, we use the Hamming window of length 2048 samples (∼85 ms length, ∼11.72Hz
resolution) in the artifact detection with maximum spectral difference, and 215 samples (∼1.37
s length, ∼0.73Hz resolution) in the beta activity estimation. In both cases, the windows
overlap by 50%.

3.3.4 Beta activity estimation methods

To calculate the beta oscillatory activity, the microrecordings were either used raw or adjusted
using the methods described in Section 3.3. Afterwards, the PSD was calculated with Welch’s
method [Welch, 1967] using Hamming window with 215 samples (∼1.37 s length, ∼ 0.73Hz
resolution) and 50% window overlap. For analysis of spectral features, the PSD is then
divided by the signal power to ensure independence on the electrode-specific impedance. The
normalized spectra are further referred to according to the signals used for their calculation
as:. raw - from the raw (artifact-filtered) MER signal,. env - from the analytic envelope of the MER signal,. spikesOne - from the spiketrain of the neural cluster with the maximum amplitude

extracted from the MER signal,. spikesAll - from the unsorted spiketrain (including all neural clusters) extracted from
the MER signal.

Finally, the beta activity was evaluated as either the maximum value (-Max methods) or
the summed power (-Sum methods) in the 13-30 Hz beta band. Further in this thesis, the
implemented methods of beta activity evaluation are referred to as:
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. rawMax - maximum value in the 13-30Hz band of raw PSD,

. envMax - maximum value in the 13-30Hz band of env PSD,

. spikesOneMax - maximum value in the 13-30Hz band of spikesOne PSD,

. spikesAllMax - maximum value in the 13-30Hz band of spikesAll PSD,

. rawSum - summed power of the 13-30Hz band of raw PSD,

. envSum - summed power of the 13-30Hz band of env PSD,

. spikesOneSum - summed power of the 13-30Hz band of spikesOne PSD,

. spikesAllSum - summed power of the 13-30Hz band of spikesAll PSD,

3.4 Spectral features visualization

To facilitate visual inspection of a microelectrode recording (MER) dataset spectral features,
two visualization tools were implemented within this thesis. They were also used for verification
of exploration findings. The ProtocolPlot tool is an interactive MATLAB plot, where the
signals are arranged in the same manner as the operation protocols in our dataset. The
GUI-Beta3D tool is a MATLAB GUI application with the spectral activity shown in a Ben-gun
3D electrode spacing according to adjustable parameter settings. This section briefly describes
the overall function of the tools. A more thorough documentation can be found in Appendix
A.

3.4.1 ProtocolPlot

The ProtocolPlot tool displays the MER signal dataset of a single exploration along with the
respective PSDs. The MER signals are filtered for artifacts and the longest contiguous clean
segment is displayed and used for PSD calculation. Signals from each electrode are arranged
in the respective columns. Each row corresponds to a certain depth position (distance from
the estimated target), which is denoted in the leftmost column. Additional vertical lines
in the PSD columns mark the frequency range of interest. The PSD is calculated using a
subset of 4 available methods as listed in Section 3.3.4. The spectra are plotted in a grid
along with the MER signals. In the grid plot, the PSDs are scaled to illustrate the spectrum
characteristics, such as noisy spectrum, peaks at certain frequencies, or rising tendency
towards high frequencies. The precise magnitudes can be viewed in the plots on the bottom,
where the axes are labeled correctly according to the specific recording. Positions annotated
as STN are marked with yellow background in the grid plot. The whole plot is interactive, it
can be moved and zoomed as usual MATLAB plots. When clicking on a position area, the
particular spectrum is plotted at the bottom left and the corresponding MER is plotted at
the bottom right. An example of such visualization is shown in Figure 3.5.
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Figure 3.5: Exploration MER visualization using ProtocolPlot.

3.4.2 GUI - Beta3D

The GUI-Beta3D tool is a MATLAB application visualizing spectral features of MER data
from an exploration in 3D electrode spacing. The application window is shown in Figure
3.6. The visualization is plotted in 3D axes on the left side of the window. The plot
can be moved, rotated, or zoomed as usual MATLAB axes. It consists of five cylinders
representing the electrode configuration. The X axis represents the front-back (anterior-
posterior) electrode spacing and the Y axis represents left-right (lateral-medial for the left
hemisphere, medial-lateral for the right hemisphere) electrode spacing. While the Z axis
(cylinder height) represents the depth in which particular signals were recorded, the cylinder
profile (diameter) shows the relative beta activity at the particular electrode and depth
throughout the trajectory. Each cylinder segment is colored according to the specific area,
where the MER was supposed to be acquired. The legend to the color labels is displayed on
the right of the plot.
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Figure 3.6: GUI-Beta3D application window.

The exploration dataset can be selected from the database in the dropdown menu in the
top right corner. The parameters of the spectral features to be displayed can be adjusted
using the control panels on the right and bottom of the application window. The parameter
options and respective control panels are elaborated on in Appendix A.

3.5 Subthalamic nucleus classification

The final task of the assignment is to classify the subthalamic nucleus from microelectrode
recordings. In the literature, there are many approaches to identify STN. According to
comparison made by [Konicarová, 2021], the normalized root mean square (NRMS) of the
signal is the most accurate from the evaluated selection and relatively simple and fast at the
same time. Therefore, this method was chosen as the baseline approach to STN classification.
The approach of STN classification using beta activity estimation was also tested. Afterwards,
the contribution of beta activity evaluation to the NRMS-based STN classifier was studied
through combining both approaches in a Support Vector Machine (SVM) classifier.

3.5.1 Normalized root mean square

The normalized root mean square (NRMS) value of a signal, originally suggested in [Moran et al., 2006],
is the signal power normalized by a reference signal power, which is calculated for each trajec-
tory and electrode from the first 5 measured positions, i. e., in depths from T-10 to T-8 in
our dataset, which can be safely assumed to be prior to STN. The signal power or root mean
square value (RMS) of signal X is calculated as
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RMS(X) =

√√√√ n∑
i=1

x2
i

n
, (3.6)

where xi is the i−th signal sample value and n is the length of signal X. The reference signal
power Pref for a trajectory and electrode is calculated as a mean value of RMS at the first
five positions p of the trajectory and electrode

Pref =
5∑

p=1

RMS(Xi)
5 . (3.7)

The NRMS value of the signal is then calculated from RMS of the signal and the corresponding
reference Pref as

NRMS(X) = RMS(X)
Pref

. (3.8)

The main advantage of the NRMS criterion is the length-invariance and impedance-invariance.
Both of them are exploited in our case as the signal length varies due to artifact filtering, and
the electrode impedance uncertainty stated by the manufacturer.

3.5.2 Support Vector Machine

Support Vector Machine (SVM) is one of the most popular machine learning concepts used
for binary classification as it is simple, efficient, and well described in theory. This section
contains a basic description of SVM principles as represented in [Mohri et al., 2012]. Training
an SVM is defined as an optimization problem of finding a class-separating hyperplane. The
general equation of a hyperplane in RN is

w · x + b = 0, (3.9)

where w ∈ RN is a non-zero vector normal to the hyperplane, x ∈ RN is a point in space
belonging to the hyperplane, and b ≥ 0. The training point xi ∈ RN with label yi ∈ {−1, 1}
is correctly classified if

yi = sign (w · xi + b) . (3.10)

In the case of separable data, the optimization problem can be formulated as a margin
maximization problem. Margin ρ is the distance between the hyperplane and the closest
member of the class. The margin maximization is equivalent to minimizing ||w|| or 1

2 ||w||
2.

Thus, in the case of a separable dataset Tm = {(x1, y1), ..., (xi, yi), ..., (xm, ym)}, the SVM
solution can be defined as the solution to the convex optimization problem formulated as

minw,b
1
2 ||w||

2 (3.11)

s. t.: yi(w · xi + b) ≥ 1, ∀(xi, yi) ∈ Tm.

However, in the case of an inseparable dataset Tm, for all hyperplanes, there exists such
(xi, yi) ∈ Tm) that

yi(w · xi) � 1. (3.12)

Therefore, slack variables ξi ≥ 0 are introduced to relax the conditions

yi(w · xi) � 1− ξi, (3.13)
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as ξi is the measurement of distance by which the constraint is violated. The slack variables
are then added to the optimization as

minw,b
1
2 ||w||

2 + C
m∑

i=1
ξi (3.14)

s. t.: yi(w · xi + b) ≥ 1− ξi ∧ ξi ≥ 0, ∀(xi, yi) ∈ Tm,

where C parameter determines the trade-off between the margin maximization and minimiza-
tion of the constraint violation penalty.

3.5.3 Hold-out validation

To provide an unbiased estimation of the classifier test error rate, it must be evaluated on
previously unobserved data. In this thesis, such situation is modeled using hold-out validation
strategy. The dataset is randomly split into three parts - the training, validation, and testing
set. The model with a hyperparameter setting is fit on the training set and the fitted model
is then used to predict the labels of the observations in the validation set. The optimal
hyperparameter setting is chosen according to the results on the validation set. Finally, the
fitted model with the chosen hyperparameter setting is used to predict the labels of the testing
dataset, which provides an unbiased estimation of the classifier performance.

3.6 Statistical analysis methods

In order to evaluate our findings quantitatively, several statistical methods were used. Namely,
a robust confidence interval calculation based on interquartile range, Wilcoxon paired rank-
sum (Mann-Whitney U) test, Pearson correlation coefficient, and ROC curve. They are all
described in this section as follows.

3.6.1 Confidence interval

The standard 95% confidence interval is an estimation of the range, where an observation
should appear with 95% probability. It is calculated using the standard deviation (SD) around
the mean value from n samples as(

mean− 2 · SD√
n

, mean + 2 · SD√
n

)
. (3.15)

However, due to the unknown SD and for better robustness to outliers, we decided to use
the interquartile range (IQR) around the median value instead. In normal distribution,
it is assumed that IQR = 1.3 · SD. As a more conservative estimation, we assume that
IQR = SD. Therefore, we calculate the 95% confidence interval around the median value
using the interquartile range (IQR) from n observations as(

median− 2 · IQR√
n

, median + 2 · IQR√
n

)
. (3.16)
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3.6.2 Wilcoxon rank-sum test

The Wilcoxon rank-sum test, also known as the Mann-Whitney U test, is used to make a
comparison of two paired groups. One of the main advantages is that it is nonparametric,
hence does not put any requirements on the population distribution. The only assumption
is of randomly and independently chosen data samples. However, it has a lower statistical
power, compared to its parametric counterpart (Student’s t-test). The null hypothesis is that
the two populations have the same continuous distribution. Values of each sample pair are
compared. The number of "winning" samples, i. e., larger than its paired sample from the
other group, is counted in each group. The smaller of the group sums, i. e., the resulting U
statistic, is then consulted with significance tables. Generally, the more they differ, the more
significant is the null hypothesis rejection. In this work, we use this method for comparison
of beta activity on the front and back electrode in the motor subregion identification task.

3.6.3 Pearson correlation coefficient

Pearson correlation coefficient measures the linear correlation between two paired sets of
data. Given sample set S = {(xi, yi), i ∈ [1, n])} of size n, the correlation coefficient rxy is
calculated as

rxy =
∑n

i=1(xi − x̄)(yi − ȳ)√∑n
i=1(xi − x̄)2

√∑n
i=1(yi − ȳ)2 , (3.17)

where x̄ and ȳ are the means of the respective groups. The correlation coefficient is of value
between -1 and 1. A large absolute value indicates a strong correlation between the groups,
while correlation close to 0 indicates no linear relation in the data. An advantage of the
Pearson correlation coefficient compared to the covariance measure is the normalization, which
allows to indicate a relation between differently scaled data. However, it is limited by the
linearity, hence nonlinear relations cannot be reflected in the coefficient. It is also not a robust
measurement and thus prone to distortion caused by outliers. In this work, the investigated
data correlations are between the criteria for STN classification, in comparison of clinical
and broadband MER data, and between the identified beta activity and the PD symptoms
severity.

3.6.4 P-value

In statistics, the P-value denotes the significance of the calculated result. It is defined as the
probability of obtaining the same or more extreme results if the null hypothesis is valid. The
null hypothesis can be rejected if the P-value is lower than the previously stated significance
level [James et al., 2013]. In this thesis, we work with the most widely used 0.05 significance
level. We evaluate the P-value of the Wilcoxon rank-sum test and the Pearson correlation
coefficient.
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3.6.5 Classifier performance

To evaluate a classifier performance on a dataset, the predictions are compared against the
ground truth and the correct and incorrect classifications are counted as in Table 3.1

predictions \class member Positive Negative
Positive True Positive (TP) False Positive (FP)
Negative False Negative (FN) True Negative (TN)

Table 3.1: Contingency table.

The accuracy (ACC) of a binary classification is calculated as

ACC = TP + TN

TP + FN + FP + TN
. (3.18)

The true positive rate (TPR) or sensitivity of a binary classification is calculated as

TPR = TP

TP + FN
. (3.19)

The true negative rate (TNR) or specificity of a binary classification is calculated as

TNR = TN

TN + FP
. (3.20)

The false positive rate (FPR) of a binary classification is calculated as

FPR = FP

FP + TN
. (3.21)

The receiving operator characteristic (ROC) curve shows the relation between the true
positive rate and the false positive rate of a binary classifier depending on a parameter
(threshold) range. The area under the ROC curve (AUC) evaluates the classifier performance
across the range of thresholds. The AUC parameter is scale-invariant and threshold-invariant.
AUC value ranges from 0 to 1, AUC close to 1 indicates good classifier performance, while AUC
close to 0.5 denotes that the classifier performance is the same as of random classification.
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Chapter 4

Results

This chapter presents the findings and results of completing the tasks in this thesis. Firstly,
the analysed microelectrode recording (MER) data are specified in Section 4.1. Secondly, the
subthalamic nucleus (STN) classification task is approached in Section 4.2 using thresholding
and Support Vector Machine (SVM) classifiers. Thirdly, Section 4.3 maps beta activity along
the exploration trajectory throughout STN. These findings are then compared to observations
made in a broadband MER dataset of 1 bilateral DBS surgery in Section 4.4. Finally, beta
activity extracted from clinical MER data is investigated in relation to severity of the cardinal
PD symptoms (tremor, rigidity, and bradykinesia) in Section 4.5. In each task, the beta
activity estimation methods listed in Section 3.3.4 were applied and their performance was
compared. Such evaluation was however not trivial, as the ground truth for beta activity was
missing in terms of both magnitude and localization.

4.1 Dataset

The subject of this thesis is exploration and analysis of an extensive clinical microelectrode
recording (MER) dataset from deep brain stimulation (DBS) surgery of Parkinson’s disease
(PD) patients. Data were acquired and processed using the methods described in Chapter 3.
The signals were band-pass filtered at 500-5000 Hz and sampled at 24 kHz upon recording
with Medtronic LeadPoint system. Hereby utilized dataset was gathered at Na Homolce
hospital, Prague, Czech republic, during the years 2008-2020. The latest surgery in our
dataset was performed in July 2020. Only data from STN targeted DBS surgeries were used.
The dataset contains microelectrode recordings from 298 DBS exploration measurements of
155 PD patients. Each exploration was measured with 5 electrodes in Ben-gun formation in
multiple positions spaced in 0.5 mm increments of depth, as described Section 3.1. There were
47,490 recordings in the dataset. All signals were checked for artifacts using the maximum
spectral difference method (MDP) prior to analysis, which caused shortening or discarding of
recordings distorted by artifacts. Besides clinical signals, a broad band MER dataset was also
acquired for 1 patient operated in 2020, which is used for exploration analysis in Section 4.4.
The broadband MER recording setup was made by BrainScope. The signals are high-pass
filtered at 10 Hz and sampled at 25 kHz. It was recorded with 5 microelectrodes at 9 positions
in the left hemisphere and 8 positions in the right hemisphere, resulting in 85 recordings in
total. The length of the broad band recordings varies from 30 s to 34 s.
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4.2 Subthalamic nucleus classification from MER signals

The subthalamic nucleus (STN) was classified from MER signals using the normalized root
mean square (NRMS) criterion and beta activity estimation methods described in Section
3.3.4. As stated in Section 2.4, classification of STN has been approached in the past and is
well discussed in literature. The NRMS criterion introduced by [Moran et al., 2006] is now
a gold standard in automatic STN localization. The purpose of this task is to determine
whether the beta activity also changes dependently on the STN localization and whether it
carries supplementary information to ameliorate the NRMS based classification. Additionally,
it could be one of the possible ways to supply the missing ground truth for the beta activity
and evaluate the performance of its estimation.

For the STN classification task, only trajectories, where the signals at the first 5 positions
were available, were used. This selection was made to enable the normalization necessary for
the NRMS criterion calculation. The final dataset used for classification consisted of data
from 210 DBS surgeries from 128 patients composed of 14,593 microelectrode recordings in
total. The signals from the first 5 positions were only used to calculate the reference signal
power for normalization in NRMS. 13,544 remaining MERs were used for STN classification,
out of which 4333 were labeled as inside STN and 9210 were outside STN. The dataset was
randomly divided into training, validation, and testing data, which include 88, 20, and 20
patients, respectively. The training dataset included 140 explorations, containing 8948 MER
signals, the validation dataset included 36 explorations, containing 2442 MER signals, and
the testing dataset included 34 explorations, containing 2154 MER signals.

At first, the criteria were evaluated individually through thresholding classification on
the training dataset. The corresponding ROC curves are plotted in Figure 4.1. Calculated
areas under the curve (AUC) are recorded in Table 4.1. To consider varying thresholds in
each exploration, the ROC and AUC measures were also evaluated for each criterion and
exploration separately. The distribution of AUC values on the training dataset is shown in a
boxplot in Figure 4.2.

criterion AUC
NRMS 0.9369

rawMax beta 0.4007
envMax beta 0.7409

spikesOneMax beta 0.4538
spikesAllMax beta 0.4092

rawSum beta 0.3989
envSum beta 0.7401

spikesOneSum beta 0.4106
spikesAllSum beta 0.3614

Table 4.1: AUC for each method of STN classification on the training dataset.
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Figure 4.1: ROC for STN classifier based on NRMS and beta activity on the training dataset.
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Figure 4.2: Distribution of AUC in testing dataset for each method of STN classification on the
training dataset.

The NRMS criterion achieves the highest AUC value of 0.9369. As for the beta activity
criteria, the envMax and envSum methods achieve the highest AUC values of 0.7409 and
0.7401, respectively. The AUC values for other types of beta activity are below 0.5. Such
performance can be also explained by the correlation between the NRMS and the respective
beta activity estimation method, which persists even after the signal normalization. A
heatmap showing linear correlation between the evaluated criteria can be seen in Figure 4.3.
Significantly high correlation between NRMS and methods based on signal envelope (envMax,
envSum) explains higher classification performance of these methods compared to the other
methods, where the AUC value is lower than 0.5. This observation is consistent with negative
correlation between the NRMS and these criteria.
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Figure 4.3: Correlation between all used STN classification criteria.

After the evaluation of individual criteria, a linear SVM was trained for combinations of the
NRMS criterion with each beta activity estimation method. At first, 7 values of regularization
constant C in the <0.001, 1000> range were tested. The linear SVMs were trained on the
training dataset for each NRMS+beta combination and regularization constant value. The
model performance was then evaluated on the validation dataset. The prediction accuracy
ranged from 0.8526 to 0.8857, the sensitivity from 0.7129 to 0.7853, and the specificity from
0.9588 to 0.9723 on the validation dataset. The highest classification accuracy was seen for
the C constant set to 0.1, 1, or 10 in all evaluated linear SVMs. To facilitate the comparison
of beta activity estimation methods, we chose to set the regularization constant to 1 for
further evaluation, which is a common choice. Results with scattered data and estimated
class boundaries are shown in Figure 4.4.

The performance of the trained SVM classifiers on the testing dataset is recorded in Table
4.2. It can be observed that the estimated class boundary was independent on beta activity in
all evaluated combinations. The resulting classifier depends almost exclusively on the NRMS
feature. The optimal found threshold was θ = 2.0110.

NRMS + beta rawMax envMax spikesOneMax spikesAllMax
Sensitivity 0.7908 0.0.7908 0.7908 0.7908
Specificity 0.9589 0.9589 0.9589 0.9589
Accuracy 0.9048 0.9048 0.9048 0.9048

NRMS + beta rawSum envSum spikesOneSum spikesAllSum
Sensitivity 0.7908 0.0.7908 0.7908 0.7908
Specificity 0.9589 0.9589 0.9589 0.9589
Accuracy 0.9048 0.9048 0.9048 0.9048

Table 4.2: Performance of the linear SVM on the testing dataset.
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Figure 4.4: Results of STN classification on the training dataset using SVM.

Additionally, an SVM with Gaussian kernel was trained for the combinations of NRMS
with each beta activity criterion. The results are recorded in Table 4.3.

NRMS + beta rawMax envMax spikesOneMax spikesAllMax
Sensitivity 0.8341 0.8341 0.8341 0.8326
Specificity 0.9459 0.9459 0.9459 0.9459
Accuracy 0.9099 0.9099 0.9099 0.9099

NRMS + beta rawSum envSum spikesOneSum spikesAllSum
Sensitivity 0.8341 0.8341 0.8341 0.8341
Specificity 0.9459 0.9459 0.9459 0.9459
Accuracy 0.9099 0.9099 0.9099 0.9099

Table 4.3: Performance of Gaussian kernel SVM on the testing dataset.

Changing the SVM kernel function from linear to Gaussian did slightly ameliorate the
classifier performance on the testing dataset from 0.9048 to 0.9099. However, such small
improvement may not outweigh the disadvantages of a complex model in the bias-variance
trade-off. Besides, the linear model allows easy threshold adjustment according to the
requirements on sensitivity and specificity. Therefore, the addition of beta activity did not
improve classification of the whole STN. The extracted beta activity does not seem to reflect
the activity of large neural populations, which are specific for STN. This is possibly due to
the band-pass filtering of the clinical MER data.
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4.3 Mapping beta activity in STN

During the DBS exploration, the electrodes are inserted into the brain from the anterio-
dorso-lateral direction. The electrodes are in Ben-gun formation (as seen Figure 3.1). The
motor subregion of STN is expected at the dorsolateral end as described by [Horn et al., 2017].
Therefore, posterior electrodes are more likely to insert this region than anterior electrodes.
The intersection with the motor region is expected right at the beginning of STN labeled
sector or shortly after entering the STN.

The beta activity was explored only in the positions labeled by surgeons as STN. Pairs of
central-posterior and anterior-central electrodes were used to evaluate the differences in β
activity at various distances from STN entry. Only explorations, where either a pair of central-
posterior or anterior-central intersected with STN, were evaluated. In the central-posterior
pair, the central electrode was considered the front electrode and the posterior electrode
was considered the back electrode. In the anterior-central pair, the anterior electrode was
considered the front electrode and the central electrode was considered the back electrode.
In case all three electrodes (central, anterior, and posterior) intersected with STN, only the
central-posterior pair was evaluated to maintain the explorations independency. In total, 3402
MER signals in 179 exploration electrode pairs were evaluated in this task.

Figure 4.5: Visualization of the beta activity identified with -Max methods throughout the STN
in a randomly selected subset of 30 patients for all estimation methods. The electrodes are
color-coded at the bottom row of each graph. The legend to the color codes and beta activity
magnitude is displayed on the right. The beta activity was scaled for illustration.

Higher beta activity was expected at the back electrode and at the beginning of STN. For
illustration and rough visual comparison, the values of beta activity throughout the STN
are displayed in paired heatmaps (upper and lower) for a randomly selected subset of 30
patients in Figures 4.5 and 4.6. There is a visible similarity between the heatmaps produced
by env and spikesAll spectrum calculation methods, which agrees with their correlation seen
in Figure 4.3. For these methods, a slightly higher beta activity can be seen at the beginning
of the back electrode STN than in the front electrode, for example, in patients (columns) 3, 6,
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9 20-22, 27, or 28, the first three rows indicate an elevated beta activity, which is not seen in
their front counterpart. For the raw methods, a visibly increased beta activity at the back
electrode can be seen in columns 17 or 23.

Figure 4.6: Visualization of the beta activity identified with -Max methods throughout the STN
in a randomly selected subset of 30 patients for all estimation methods. The electrodes are
color-coded at the bottom row of each graph. The legend to the color codes and beta activity
magnitude is displayed on the right. The beta activity was scaled for illustration.

The differences between paired values at the back and front electrodes were evaluated at
the corresponding positions (distances from entry to STN). The median value of beta activity
at the back and front electrode throughout the positions is displayed in Figures 4.7 as well
as the median difference between them, along with the 95% confidence intervals visualized
as color bands around each median value. Finally, the paired differences were tested with
Wilcoxon rank-sum test. The P-value of this test throughout the distances from STN entry
for each method is plotted in Figure 4.8. The values of the paired tests correspond with the
confidence intervals overlapping in Figure 4.7.

It can be observed that the rawMax, spikesOneMax, rawSum, and spikesOneSum methods
result in highly overlapping confidence intervals in all positions, which also manifest as
particularly high Wilcoxon rank-sum test P-values. The most significant results, i. e., the
least overlapping confidence intervals and the lowest P-values in the first 2.0 mm of STN are
present when the envMax method is used. The envMax beta activity is significantly higher
at the back electrode than the front during the first five depth positions at the beginning
of the STN. Beta activity generally decreases throughout the STN on both electrodes and
the difference between them becomes smaller and less significant as the exploration proceeds
in depth. These findings are in accord with the STN anatomy, expected motor subregion
size, and typical trajectory direction. Therefore, envMax beta activity seems to be the most
efficient in the motor subregion identification task. However, due to the lack of ground truth
data (actual localization, final stimulation site, changes in response to medication), we cannot
evaluate the objective performance.
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Figure 4.7: Median values and confidence intervals for all methods of beta activity estimation.
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Figure 4.8: Wilcoxon rank-sum test for difference between beta activity on front and back electrode
for the -Max methods (left) and -Sum methods (right)

4.4 Comparison of clinical and broadband MER

This section demonstrates the difference between the clinical MER and the nonfiltered
broadband MER signals. The comparison is made with a dataset acquired from a bilateral
DBS surgery on 1 patient, where the broadband MER was recorded simultaneously at the
same set of 5 electrodes with the clinical MER, reflecting the basal activity. The broadband
MER dataset is sampled at 25 kHz, high-pass filtered at 10 Hz, and is otherwise unlimited in
frequency. It consists of synchronously recorded signals from all 5 electrodes in 9 positions
in the left hemisphere (from T-6.5 to T-2.5) and 8 positions in the right hemisphere (from
T-6.0 to T-2.5). The broadband dataset hence contains 85 recordings in total. The length of
the recordings varies from 30 s to 34 s. To illustrate the difference between the clinical and
broadband MER signal PSD, the spectrograms of the recordings are shown in Figures 4.9
and 4.11.

There are visible effects of the clinical recording band-pass filtering, especially in the STN
positions, where the beta activity is less visible in the clinical MER than in the broadband
MER. Such effects are also summed in the averaged PSD comparison in Figures 4.10 and
4.12. The beta band oscillatory activity is of similar values inside and outside the STN in the
broadband data, while it is strongly mitigated inside the STN in the clinical MER data. The
beta band PSD distribution of broadband data also differs from clinical data.
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Figure 4.9: Spectrogram of the clinical microrecordings (left) and broadband microrecordings
(right) on all electrodes and depths in range <T-6.5mm, T+0.5mm>. STN positions are marked
with a red line on the bottom of the graph. Left hemisphere.
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Figure 4.11: Spectrogram of the clinical microrecordings (left) and broadband microrecordings
(right) on all electrodes and depths in range <T-6.0mm, T+0.5mm>. STN positions are marked
with a red line on the bottom of the graph. Right hemisphere.
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Additionally, the beta activity course throughout the STN was investigated using the

broadband data and the clinical MER data as plotted in Figures 4.13 and 4.14. In the left
hemisphere, there is a strongly pronounced oscillatory region in the broadband data, as seen
in both Figures 4.9 and 4.13. Raw clinical data show a similar beta activity course in most
electrodes. It is however shadowed by much stronger beta activity on the lateral electrode,
which is not seen in the broadband data. The decreasing tendency of beta activity on the
lateral electrode is partially reconstructed using spiketrain for PSD calculation (spikesAllMax,
spikesAllSum). However, reconstructing the beta activity courses observed in other electrodes
in the broadband MERs was not accomplished by any of the estimation methods applied to
the clinical data. In the right hemisphere (Figure 4.14), the beta activity throughout STN is
increasing in the broadband data, which differs from general expectations based on Section 4.3.
Such tendency might be caused by the STN position and orientation alterations; e. g., due to
the brain shift caused by previous implantation in the other hemisphere. Unfortunately, none
of the estimations from clinical data reflects this observation in both posterior and medial
electrodes.
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Figure 4.13: Beta activity course throughout the STN. Left hemisphere.
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Figure 4.14: Beta activity course throughout the STN. Right hemisphere.

To quantitatively evaluate the comparison, the Pearson correlation between broadband and
clinical MER beta activity was calculated on the dataset. The results are shown in Figure
4.15. None of the clinical beta activity was significantly correlated with the broadband beta
activity. A borderline significant Pearson’s correlation coefficient of 0.2848 and 0.2823 with
P-values 0.0580 and 0.0602 was seen for envSum and spikesAll methods, respectively.
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4.5 Relation between beta activity and PD symptoms

To investigate the relation between the beta activity found in MER signals and the severity
of PD symptoms, we have compared the extracted beta activity values and patients’ UPDRS
scores from the examination before the DBS surgery after an overnight medication withdrawal.
For this task, we used data from 39 patients, out of which 16 patients underwent a bilateral
surgery and 23 underwent a unilateral surgery. Therefore, the data come from 55 DBS
surgeries in total, composing a dataset of 3591 microelectrode recordings. The evaluated
symptoms were tremor, rigidity, and bradykinesia, which were investigated separately. Each
symptom score is a sum of the corresponding ratings described in Section 2.7. The scores
were calculated individually for each patient and side (left and right). Patient’s overall beta
activity was calculated using the methods described in Section 3.3.4 and averaged across the
measured positions. According to literature, elevated beta activity and synchronization of
neural populations (low frequency variance) observed inside the subthalamic nucleus indicates
worse contralateral motor symptoms, especially rigidity. Thus, we expected the beta activity
magnitude to be positively correlated with the symptom severity ratings. On the other hand,
the variance of the peak beta frequency was expected to be negatively correlated with the
symptom severity.

The Pearson correlation coefficients of the UPDRS tremor, rigidity and bradykinesia ratings
and beta activity are displayed in Tables 4.4, 4.5 and 4.6. The mean beta activity value
throughout the exploration is considered in Table 4.4 from all recorded positions and electrodes,
while in Table 4.5 it is calculated from STN positions only. In Table 4.6, the variance of
the frequency with maximum amplitude in the beta band (13-30 Hz) throughout the STN
positions is compared against the UPDRS scores.

UPDRS score \ mean rawMax envMax spikesOneMax spikesAllMax
ipsilateral tremor 0.0411 -0.0415 -0.0816 -0.0225
contralateral tremor -0.0261 0.0019 0.0575 0.1106
ipsilateral rigidity *0.2939 0.2031 0.2006 *0.3005
contralateral rigidity *0.3132 -0.0185 *0.2790 0.2232
ipsilateral bradykinesia 0.1591 0.1129 0.1973 0.1960
contralateral bradykinesia 0.1728 -0.0471 0.1405 0.0820

UPDRS score \ mean rawSum envSum spikesOneSum spikesAllSum
ipsilateral tremor 0.0561 -0.0557 -0.1639 -0.0382
contralateral tremor 0.0004 -0.0381 -0.0978 0.1625
ipsilateral rigidity *0.3208 0.1585 *0.2957 **0.3707
contralateral rigidity *0.3165 -0.0948 0.0647 0.2539
ipsilateral bradykinesia 0.1656 0.1187 0.0698 0.1483
contralateral bradykinesia 0.1702 -0.0259 0.0116 0.1048

Table 4.4: Pearson correlation coefficient between patients’ UPDRS scores and mean beta activity
value in all positions of an exploration. Values marked by * and ** are stastically significant with
P-value <0.05 and <0.005 respectively .
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UPDRS score \ mean rawMax envMax spikesOneMax spikesAllMax
ipsilateral tremor -0.0082 -0.0180 -0.1383 -0.0788
contralateral tremor 0.0205 0.0271 0.0530 0.0683
ipsilateral rigidity *0.3409 0.2758 0.1833 *0.2819
contralateral rigidity 0.1922 0.0853 0.2310 0.2196
ipsilateral bradykinesia 0.1174 0.1766 0.1784 0.1951
contralateral bradykinesia 0.0915 -0.0182 0.1156 0.0737

UPDRS score \ mean rawSum envSum spikesOneSum spikesAllSum
ipsilateral tremor 0.0092 0.0082 -0.1554 -0.0575
contralateral tremor 0.0361 0.0188 -0.0193 0.1761
ipsilateral rigidity *0.3385 *0.2857 0.2004 *0.2822
contralateral rigidity 0.2180 0.0544 0.0215 0.1623
ipsilateral bradykinesia 0.1156 0.1925 0.0065 0.1153
contralateral bradykinesia 0.0993 0.0091 -0.0816 0.0612

Table 4.5: Pearson correlation coefficient between patients’ UPDRS scores and mean beta activity
value in STN positions of an exploration. Values marked by * are stastically significant with
P-value <0.05.

UPDRS score \ variance rawMax envMax spikesOneMax spikesAllMax
ipsilateral tremor 0.1732 -0.0203 -0.0805 -0.1734
contralateral tremor * 0.3131 -0.0354 0.1071 -0.0284
ipsilateral rigidity -0.1508 0.1859 0.0778 -0.0667
contralateral rigidity -0.2206 0.1536 0.1203 0.1746
ipsilateral bradykinesia -0.0672 0.2715 0.0610 0.0820
contralateral bradykinesia -0.0699 0.2092 0.0122 0.1822

Table 4.6: Pearson correlation coefficient between patients’ UPDRS scores and variance of
frequency with maximum amplitude in the beta band in STN positions of an exploration. Values
marked by * are stastically significant with P-value <0.05.

A significant correlation between the rigidity UPDRS scores and mean beta activity
measured from MER signals can be seen in Table 4.4. For beta activity estimated from
raw signals, the coefficients are significant in all four cases (ipsilateral and contralateral
rigidity vs. rawMax and rawSum methods). The ipsilateral rigidity score seems to be more
significantly correlated with beta activity - it is significant for 5 beta activity estimation
methods considering all recording positions and also for 5 methods when only STN positions
are considered. Meanwhile, the contralateral rigidity only correlates with 3 methods of beta
activity estimation. Furthermore, no significant correlations between contralateral rigidity
and beta activity are observed if STN positions are considered only. As for the correlation
between UPDRS scores and peak frequency variance in STN, the only significant correlation
is between the contralateral tremor and the rawMax beta activity. However, due to the
number of calculated correlations, this result could be also considered as false positive. If the
significance level was adjusted with Bonferonni correction, none of the observed correlations
would be significant. On the other hand, correlation significance in Tables 4.4 and 4.5 occured
multiple times and consistently for rigidity scores, which supports the hypothesis of an existing
correlation between the rigidity severity and beta activity.
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Chapter 5

Discussion

This chapter comments the findings made in this thesis and discusses them in the context of
existing research. We discuss the observations in the following order. Section 5.1 comments
the implemented approaches to beta activity extraction from clinical MER data and potential
relations between them. The subthalamic nucleus (STN) classification results are discussed in
Section 5.2. Section 5.3 reviews the motor subregion identification inside the STN. Eventually,
Section 5.5 evaluates the clinical relevance of the identified beta activity in relation to
Parkinson’s disease (PD) symptoms severity.

5.1 Beta activity identification

We have attempted to identify the beta activity (spectral activity in the 13 - 30 Hz fre-
quency range) from the microelectrode recordings (MER) and use it for STN classifi-
cation, the STN sensorimotor subregion, and its interpretation in relation to the clini-
cal symptoms of Parkinson’s disease. As the beta activity is not well defined in litera-
ture and the resources use different approaches [Zaidel et al., 2010], [van Wijk et al., 2017],
[Horn et al., 2017], [Tinkhauser et al., 2018], [Milosevic et al., 2020], 8 methods of beta ac-
tivity estimation were implemented and compared. They are based on 4 methods of signal
extraction for PSD calculation (raw, env, spikesOne, and spikesAll) and 2 methods of beta
activity interpretation from the normalized PSD (Max and Sum). In the heatmap of corre-
lations between the criteria in Figure 4.3 is a visible relation between the -Max and -Sum
methods calculated from the same PSD, which is an expected observation, as they are just
different beta band interpretations of the same PSD. The correlation between the spikesOne
and spikesAll methods is likely caused by a proportion of signals, where only one neural
cluster was defined, hence the spikesOne and spikesAll PSD are the same. A surprisingly
high correlation appears between the env methods and the normalized signal power (NRMS),
which may be caused by relatively high beta band power compared to the rest of the envelope
PSD. The envelope calculation in principle eliminates high frequencies, which increases the
beta band power importance in the normalized PSD and causes seemingly higher relative beta
activity in the STN positions, which are typically denoted by increased high frequency activity.
Furthermore, the envelope methods highly correlate with the spiketrain methods, which is not
caused by the remaining power in the beta band, as the correlation between the spiketrain
methods and NRMS is negative. This observation can be explained as the envelope reflecting
particularly high signal peaks recognized as spikes while mitigating signal fluctuations with
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lower amplitudes. It also explains the higher correlation between the envelope and spikesAll
methods than between the envelope and spikesOne methods, as the envelope does not perform
any sort of spike sorting.

5.2 Subthalamic nucleus classification

The first discussed result is the subthalamic nucleus (STN) classification task. The criteria
used for STN classification were the normalized root mean square (NRMS), which was also
reviewed in literature as a reliable indication of STN [Moran et al., 2006]. Using the NRMS
in combination with the implemented beta identification methods, 8 linear Support Vector
Machines (SVM) were trained. The results displayed in Figure 4.4 are the same for all
combinations. They show independence of STN classification on estimated beta activity. The
resulting linear classifiers depend solely on the NRMS criterion and are therefore equivalent
to a simple thresholding classification. Such findings are in accord with the evaluated
single-criteria performance (see Table 4.1 and Figure 4.1) and their correlation (see Figure
4.3) as discussed in Section 5.1. The high precision of NRMS criterion was also expected
as evaluated by [Konicarová, 2021]. An increased beta activity at the STN entry as seen
in [Zaidel et al., 2010], [Horn et al., 2017],[van Wijk et al., 2017], [Koirala et al., 2020] and
[Milosevic et al., 2020] was not observed. However, the main source of data in the cited
literature are the local field potentials (LFP), which reflect the activity of neural populations
and are not limited in low frequencies. Meanwhile, the signals in our dataset are band-pass
filtered in 500 Hz - 5000 Hz upon recording, which is necessary for the audiovisual signal
inspection and STN identification done by the surgeon. This also puts limitations on low-
frequency activity, including the beta band. The acquired clinical MER signals thus rather
reflect the spiking activity of nearby neurons than the synchronized neural populations activity
at low frequencies. Therefore, the characteristics of the beta activity extracted from our data
possibly differs from the LFP beta activity.

5.3 Motor subregion identification

After the classification of the subthalamic nucleus was evaluated, we have focused on identifying
the motor subregion within. Multiple sources have reported the overlap between this area and
the beta band oscillations. [Zaidel et al., 2010] identified a distinct dorsolateral oscillatory
region, which is correlated with motor impairment severity and predicts on-stimulation
medication response. [Milosevic et al., 2020] observed a statistically significant incidence
between the maximum observed beta peak power and the final stimulation site using LFP
physiology. Using the implemented extraction methods as listed in Section 3.3.4, we have
mapped the beta activity course throughout the STN. Given the anterio-dorso-lateral direction
of the exploration trajectory used at the clinical facility, which provided the data, we expected
the highest beta activity in the first explored positions within the STN at the electrodes
in the posterior part of the Ben-gun formation. Therefore, we have compared the beta
activity at the anterior-central and central-posterior electrode pairs in the explorations, where
they both penetrated the subthalamic nucleus. The results tested with Wilcoxon rank-sum
(Mann-Whithney U) test are reported in Section 4.3. A significantly (P-value <0.05) higher
beta activity was seen in the back electrode at the beginning of STN with env and spikesAll
methods. The similar efficiency of the methods agrees with the correlation between them
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as reported in Figure 4.3 and discussed above. The placement of the largest differences at
the first 2.0 mm of STN is in accord with the expected position and size of the primary
motor region as mapped by [Horn et al., 2017]. The decreasing significance in later STN
positions possibly reflects varying length of the dorso-lateral oscillatory region as reported
by [Zaidel et al., 2010]. From these findings, it seems that the envMax method, which had
the most significant beta activity differences, efficiently mimics the beta activity extracted
from LFP. However, this observation could not be verified with ground truth data as the
information about the final stimulation placement and the medication response was missing.

5.4 Comparison to broadband MER data

The comparison of the clinical and broadband MER spectra shows that the band-pass
filter affects the signal spectra critically. There was a striking difference between the mean
broadband and clinical data power spectral density as seen in Figures 4.13 and 4.11. This
difference affected the beta activity to a great extent as plotted in the beta activity course
through STN in Figure 4.13 and 4.14, which are visually very different in the clinical and
broadband data. As seen in the calculated Pearson correlation coefficients in Figure 4.15,
none of the beta activity estimations from clinical data significantly correlated with the beta
activity in the broadband data. The highest correlations, which were borderline significant
were for the envSum and spikesOneMax methods. Surprisingly, the envMax method, which
showed the highest performance in the STN mapping task in Section 4.3, does not show
substantial correlation. While the inside and outside STN broadband spectra are similar in
magnitude, in the case of the clinical data, they differ considerably as in the averaged PSD in
Figures 4.10 and 4.14. The beta band power is suppressed more strongly in the inside STN
recordings than outside STN. Such distortion may be caused by increased high-frequency
activity inside STN leading to relatively lowered beta band importance in the normalized
spectrum. Another cause of the difference may be an incidence with unknown regions outside
the STN, which oscillate at beta frequencies. Such regions may include neural regulation
pathways between the cortex and the basal ganglia as noted in [Michmizos et al., 2017]. These
areas may also be potential candidates for deep brain stimulation, especially for patients who
are not eligible for STN-DBS. For instance, deep brain stimulation of the caudal zona incerta,
which is located close to the posterior tail of STN, has shown promising results reported by
[Blomstedt et al., 2018].

5.5 Clinical interpretation of beta activity

At last, to provide a clinical interpretation of the extracted spectral features, the beta activity
correlation with the Unified Parkinson’s disease rating scale (UPDRS) scores for three cardinal
Parkinson’s disease symptoms (tremor, rigidity, and bradykinesia) was evaluated, which is
reported in Section 4.5. Tremor and bradykinesia scores did not show any significant correlation
with the investigated beta activity. A significant correlation was seen between the mean beta
activity found during the whole DBS exploration and axial rigidity UPDRS scores. Contrary
to the findings of [Tinkhauser et al., 2017], [Horn et al., 2017], and [Telkes et al., 2018], the
contralateral rigidity did correlate with beta activity when all positions were considered, but
not when they were limited to STN positions only. The high-frequency activity in STN may
cause beta band suppression. Additionally, the beta activity observed outside the STN may

45



5. Discussion ............................................
indicate neural synchronization at the beta frequency between the basal ganglia and cortical
areas, which has been correlated to PD symptoms severity as reviewed by [Oswal et al., 2013]
and [Chung et al., 2018]. On the other hand, the ipsilateral rigidity was significantly correlated
with beta activity in both cases. This observation agrees with the findings of [Wild, 2015].
Other sources, such as [Horn et al., 2017], [Tinkhauser et al., 2017], and [Telkes et al., 2018],
only report observations regarding the contralateral symptoms omitting the ipsilateral ones
completely. The methods with the strongest and most consistent correlations were based
on raw (artifact-filtered) MER signals and their unsorted spiketrains. As opposed to the
expectations from previous tasks evaluation, the analytic envelope based methods did not
perform so well. This suggest that different beta band characteristics may relate to the
symptom severity than to the STN motor region identification. Given the number of evaluated
correlation coefficients, a Bonferonni correction would be appropriate. Unfortunately, our
findings are not strong enough to withstand such correction and they would all appear
insignificant if the P-value threshold was adjusted. Nevertheless, the correlation significance
appeared rather consistently for the same symptoms, which is unlikely in case of random
occurrences. In addition to the mean beta activity, another hypothesis was made based on
pathological neural synchronization at beta frequencies made by [Michmizos et al., 2017]. We
observed the peak frequency variance in the beta band and its variance throughout the DBS
exploration. However, there was only one significant correlation, which could be assumed as a
random false positive occurrence given the high number of evaluations.
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Chapter 6

Conclusion

This chapter concludes the achievements of individual tasks and the overall work in this
thesis. Later, it mentions potential tasks for our future research on this topic. The assignment
consisted of tasks listed as follows...1. Study relevant literature on preprocessing of neuronal microelectrode recordings (MER)

and their use for nuclei classification in deep brain stimulation (DBS) for Parkinson’s
disease (PD)...2. Prepare the dataset: convert and preprocess data from DBS surgeries including surgical
protocols and other metadata...3. Study, implement and evaluate methods for identification of the sensorimotor subregion
of the subthalamic nucleus (STN) and identification of beta activity from MER signals.
Compare your results on clinical data to non-filtered broadband MER data...4. Implement a visualization tool for MER activity parameters in 3D...5. Implement and evaluate an appropriate classifier for identification of the STN from MER
signals. Evaluate performance of your classifier on the dataset from task 2.

Task 1 was answered with the resources listed in Bibliography at the end of this thesis.
Among the literature, the essential titles were [Moran et al., 2006], [Zaidel et al., 2010] and
[Bakštein, 2016], which are also listed in the assignment. There are publications from medical,
electrical engineering, and computer science areas, as well as interdisciplinary ones. Given the
broad scope of the topic and a long history (about three decades) of deep brain stimulation
treatment in PD [Gardner, 2013], it is only a fraction of the available literature, which is most
relevant to our work.

We have completed Task 2 prior to the remaining tasks. The data were acquired from
the Na Homolce hospital, Prague, Czech Republic at the end of August 2020. The latest
exploration processed in our dataset was performed in July 2020. After extracting the data
from the hospital device, they were converted to .bin format and metadata (name, surgery
date, hemisphere, and explored positions) were extracted and imported into our dbsProcessing
Data Access Object framework developed by [Sieger, 2013]. Afterwards, the data were labeled
according to the acquired operation protocol scans. The prepared dataset was later used
for exploration and analysis in this thesis and is ready for exploitation in other tasks of our
research group.
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The results of Task 3 are reported in Sections 4.3 and 4.4. They are also discussed in

Chapter 5. We were able to locate an increased beta oscillatory activity in the posterior
part of detected STN with some of the implemented beta identification methods. However,
given the lack of ground truth (actual sensorimotor region location, stimulation placement,
medication response), it was not possible to verify our findings. In addition, the comparison
to broadband data revealed critical differences from the clinical data. Unfortunately, only one
bilateral DBS surgery in our dataset provided the broadband data as well. It was therefore
not possible to make a more extensive comparison and deduce specific attributes of such
differences.

The visualization tool assigned in Task 4 was implemented and used during the work for
visual inspection and results verification in individual explorations. It can be either used as a
MATLAB function or as a GUI application. Its function is briefly described in Section 3.4 and
documented for potential users in Appendix A. The 3D exploration trajectory is represented
by an electrode spacing in a Ben-gun formation. However, visualization of specific basal
ganglia structures surrounding the electrodes was beyond the scope of this thesis. Besides the
3D tool, another tool was implemented to visualize the data and their spectral features in an
operation protocol-like manner in a 2D grid plot. It was additionally employed in the 3D
visualization GUI application and can be also used separately as a MATLAB function. It is
described in Section 3.4 and documented in Appendix A. Both tools were implemented as
part of our DAO framework and work as such.

The accomplishments of Task 5 are recorded in Section 4.2 and discussed in Chapter 5. We
have implemented several criteria for STN classification based on the normalized root mean
square (NRMS) and the beta activity extraction methods listed in 3.3.4. The normalized
root mean square (NRMS) criterion reached a considerable 0.9048 precision on the testing
dataset. This result agrees with findings made by [Moran et al., 2006], [Bakštein, 2016], and
[Konicarová, 2021]. Contrary to expectations, when training linear SVM classifiers, beta
activity was not found to be particularly helpful in STN classification. Changing the SVM
kernel to Gaussian showed a slight improvement in the classifier performance. Such a small
improvement (from 0.9048 precision to 0.9099) cannot uphold to the bias-variance trade-off of
a complex model. As the resulting linear SVM classifier is equivalent to NRMS thresholding,
it can be easily adjusted according to the requirements on sensitivity and specificity.

In addition to the assigned tasks, the relation of clinical MER beta activity to the PD
symptoms severity was evaluated. The observations are reported in Section 4.5 and commented
on in Chapter 5. Two of the inspected symptoms (tremor, bradykinesia) did not appear to
be correlated with beta activity, while axial rigidity was significantly correlated with beta
activity. As opposed to expectations, the correlations observed with the ipsilateral rigidity are
more substantial than the contralateral rigidity. Nevertheless, such findings show a clinical
relevance of the studied beta activity.

The hereby listed achievements could be elaborated on in our future research. For instance,
adding new broadband MER data from recent DBS surgeries (since August 2020) would
perhaps contribute to inside STN beta activity exploration. It would also reveal more attributes
of clinical and broadband data comparison than the single surgery dataset we have attained.
The implemented visualization tools are routinely used in visual signal inspection. The 3D beta
activity visualization could be employed in atlas-fitting basal ganglia visualization developed
by [Bakštein, 2016]. The atlas-fitting process could also provide additional information to the
electrode localization, which would lead to a better understanding of the outside STN beta
osillations observed in this thesis and their clinical relevance.
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To conclude the thesis, we consider the assignment tasks to be fulfilled as requested. An
extensive clinical microelectrode recording dataset was explored and analysed during our
work. The main contributions were the dataset preparation, which is ready for use in further
research, implemented visualization tools, which are routinely used for result verification
through visual signal inspection. Besides facilitating the current work with data, we have
devised new research questions concerning the beta oscillatory activity in clinical MER from
STN-DBS surgery exploration. Although the results differ from expectations in some cases,
they provide a meaningful insight to the beta activity interpretation in our data.
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Appendix A

Visualization tools documentation

This appendix documents the software tools implemented within this thesis. The tools
provide visualization of the microelectrode recoding (MER) signals acquired during deep brain
stimulation (DBS) surgery and their spectral features. They are implemented in MATLAB
and work as a part of our dbsProcessing Data Access Object (DAO) framework. It is therefore
necessary to have the framework initialized prior to launching the visualization.

A.1 ProtocolPlot

The ProtocolPlot tool shows a MER dataset and respective power spectral density (PSD) in
a structure similar to operation protocols. It has two parts: the grid plot and the close-up
plot. In the grid plot, the recordings and their PSDs are plotted in a grid with STN positions
denoted with a yellow background. When a position is clicked in the grid plot, a callback
function plots the respective MER signal and the corresponding PSD in the close-up plot.
The tool is implemented as a MATLAB function and works as a part of the dbsProcessing
framework. It is therefore necessary to have the framework initialized. Besides other parts
of dbsProcessing, the calculateSpects function must be also present in the framework. The
function output variable is a handle to the created figure. The input parameters are listed as
follows.. patientID - exploration ID in DAO explorationPatients. Must be specified.. spectMethod - signal feature type used for PSD calculation, which can be input as a

single string (if only one PSD type is required) or a cell array of strings (a subset of
available PSD methods); e. g., ’raw’, ’env’. If not specified, the default parameter is
’raw’. Available methods are:. ’raw’ - from raw (artifact-filtered) MER signals,. ’env’ - from analytic envelopes of raw MER signals,. ’spikesOne’ - from MER signal spiketrain - single cluster with the maximum ampli-

tude,. ’spikesAll’ - from MER signal spiketrain - including all clusters..minF - minimum frequency (in Hz) to be displayed, which also affects PSD scaling in
the grid plot. If not specified, the default parameter is 3 Hz.
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.maxF - maximum frequency (in Hz) to be displayed, which also affects PSD scaling in

the grid plot. If not specified, the default parameter is 100 Hz.. nfft - number of frequency bins (window length) for PSD calculation. The frequency
resolution is equal to the sampling frequency divided by nfft. If not specified, the default
parameter is 215.. FS - sampling frequency (in Hz). If not specified, the default parameter is 24000 Hz..minBeta - minimum frequency (in Hz) of the range of interest; e. g., considered beta
band. It is used for plotting the illustration vertical band borderlines in the grid plot. If
not specified, the default parameter is 13 Hz. If not required, set the parameter value to
NaN..maxBeta - maximum frequency (in Hz) of the range of interest; e. g., considered beta
band. It is used for plotting the illustration vertical band borderlines in the grid plot. If
not specified, the default parameter is 30 Hz. If not required, set the parameter value to
NaN.. filterMethod - artifact filtering method. It depends on the available methods in DAO; e.
g., ’MDP’ for maximum spectral difference method, ’cov’ for covariance method, ’none’
for no artifact filtering - assumes already filtered signals extracted from DAO or input in
rawSignals. If not specified, the default parameter in ’none’.. rawSignals - raw signals for plotting - must be of correct size (signal length, 5 electrodes,
number of positions). If not specified, the signals are extracted from DAO according to
patientID. If specified, the parameter overrides loading signals from DAO.. spects - pre-calculated PSD in a cell array - each member is a matrix corresponding to
the method specified in the spectMethod parameter. Must be of correct size (nfft, 5
electrodes, number of positions). If not specified, the spectra are calculated from the
rawSignal input or recordings extracted from DAO. If specified, the input overrides PSD
calculation.

The input and output parameter description can be also displayed in the command window
by calling help ProtocolPlot command.
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A.2 GUI-Beta3D

The GUI-Beta3D tool displays the spectral features of interest in Ben-gun electrode spacing in
3D. It was implemented using MATLAB AppDesigner. To run the application, the dbs struct
of DAO framework must be initialized. Otherwise, the application will raise an error reported
in the command line and terminate. The application can be launched by running gui_beta3D
command or double-clicking the gui_beta3D.mlapp file in the file browser. The MER data
are loaded and filtered for artifacts according to the current dbsProcessing settings.

A.2.1 Data selection

In the data selection control panels on the right of the application window, the user has the
following choices. After setting the desired data selection parameters, the Refresh Data
button on the right must be pressed to reload the MER signals and recalculate the respective
PSD.

. Patient - the Patient dropdown menu shows a list of available exploration datasets, from
which the desired exploration can be selected. The exploration codenames in the list are
loaded from DAO.. Spectrum method - the MER feature from which the power spectral densities should
be calculated is selected through radio buttons in the Spectrum method panel. The
parameter selected at the application launch is ’raw’.. raw - from raw MER signals,. env - from analytic envelopes of MER signals,. spikesOne - from MER signal spiketrain - single cluster with the maximum amplitude,. spikesAll - from MER signal spiketrain - including all clusters.. Reference spectrum - the frequency range of interest is selected through the Reference
spectrum panel. This range is also used for the PSD normalization. The frequencies
are set in Hz. The minF must be set lower or equal to maxF, otherwise the plot will be
cleared and an error message will be displayed instead The initial range of the reference
spectrum is 3 Hz and 100 Hz for the minimum and maximum frequency, respectively..min F - minimum frequency of the reference spectrum range..max F - maximum frequency of the reference spectrum range.

A.2.2 Data visualization

The beta activity is visualized in a 3D plot in the application window. It is represented by five
cylinders spaced in Ben-gun formation as during a DBS surgery. The vertical z axis represents
the position depth, x and y axes represent the plane perpendicular to the exploration trajectory
direction. The beta activity value is shown as diameter of the cylinder at each position. The
values are scaled for better beta activity course illustration. For visualization of the currently
calculated spectra, it is possible to select the beta band frequencies and the type of beta
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activity representation in the Data visualization control panel at the bottom of the application
window. After selecting such parameters, it is necessary to press Refresh Plot button to
rewrite the current plot. It is however not necessary to press the Refresh data button if the
parameters in the Data Selection panel remain the same.

. Beta band frequencies - In the minBeta and maxBeta sliders, the frequency range of
expected beta activity can be selected. If minBeta is higher than maxBeta, or the Beta
range is outside the Reference spectrum range, the plot will be cleared and an error
message will be displayed instead. The initial values present at the application launch
are 13 Hz and 30 Hz for the minimum and maximum frequency, respectively..minBeta - the minimum frequency of the considered beta band..maxBeta - the maximum frequency of the considered beta band.. Beta activity type - on the right of the Data visualization control panel, there are options
for beta activity type selection..max - the plotted beta activity is the maximum power of one frequency bin in the

selected beta band.. sum - the plotted beta activity is the summed power of the the whole selected beta
band.

A.2.3 Protocol Plot

Each setting can be also visualized in a layout similar to operation protocols as when using
the ProtocolPlot visualization tool. By clicking on the Protocol Plot button a new figure
opens. The calculated spectra are plotted in a grid along with the original MERs from DAO.
Positions annotated as STN are marked with yellow background. The plot is interactive, it
can be moved and zoomed as usual MATLAB plots. Additionally, when clicking on a position
area, the particular spectrum is plotted at the bottom left and the corresponding MER is
plotted at the bottom right.

A.3 visualizeBeta3D

It is also possible to visualize the beta activity in a 3D electrode spacing without launching the
GUI. The visualizeBeta3D tool creates the same plot as GUI-Beta3D, except the parameters
cannot be adjusted interactively. It is implemented as a MATLAB function in the same
manner as the ProtocolPlot tool and it also works as a part of our DAO framework. The
output parameter is a handle to the created figure. The input parameters are listed as follows.

. patientID - exploration ID in DAO explorationPatients. Must be specified.. spectMethod - signal feature type used for PSD calculation, which can be input as a
single string (if only one PSD type is required) or a cell array of strings (a subset of
available PSD methods); e. g., ’raw’, ’env’. If not specified, the default parameter is
’raw’. Available methods are:
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. ’raw’ - from raw (artifact-filtered) MER signals,. ’env’ - from analytic envelopes of raw MER signals,. ’spikesOne’ - from MER signal spiketrain - single cluster with the maximum ampli-
tude,. ’spikesAll’ - from MER signal spiketrain - including all clusters..minF - minimum frequency (in Hz) to be displayed, which also affects the PSD normal-

ization. If not specified, the default parameter is 3 Hz..maxF - maximum frequency (in Hz) to be displayed, which also affects the PSD normal-
ization. If not specified, the default parameter is 100 Hz.. nfft - number of frequency bins. The frequency resolution is equal to the sampling
frequency divided by nfft. If not specified, the default parameter is 215.. FS - sampling frequency (in Hz) of the MER signal. If not specified, the default parameter
is 24000 Hz.. showMethod - the beta activity type to be plotted:.max - maximum power in beta band,. sum - summed power of the beta band..minBeta - minimum frequency (in Hz) of the range of interest; e. g., considered beta
band. If not specified, the default parameter is 13 Hz..maxBeta - maximum frequency (in Hz) of the range of interest; e. g., considered beta
band. If not specified, the default parameter is 30 Hz.. spects - pre-calculated PSD in a cell array - each member is a matrix corresponding to
the method specified in the spectMethod parameter. Must be of correct size (nfft, 5
electrodes, number of positions). If not specified, the spectra are calculated from the
recordings extracted from DAO. If specified, the input overrides loading data from DAO
and PSD calculation.

The input and output parameter description can be also displayed in the command window
by calling help visualizeBeta3D command.
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